BCN nanotubes as highly sensitive torsional electromechanical transducers.
نویسندگان
چکیده
Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.
منابع مشابه
Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
Nanoscale electronics seeks to decrease the critical dimension of devices in order to improve performance while reducing power consumption. Single-walled carbon nanotubes fit well with this strategy because, in addition to their molecular size, they demonstrate a number of unique electronic, mechanical and electromechanical properties. In particular, theory predicts that strain can have a large...
متن کاملTorsional electromechanical quantum oscillations in carbon nanotubes.
Carbon nanotubes can be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal –semiconductor periodic transitions. The phenomenon is observed in multiwalled carbon nanotubes, where both the torque and the current are shown to...
متن کاملMultiwall boron carbonitride/carbon nanotube junction and its rectification behavior.
In recent years, the ternary boron carbonitride (BCN) nanotubes have attracted increasing interests because of their unique electronic properties and potential technological applications. A prime advantage of the BCN nanotubes over their carbon counterparts is the relative simplicity in manipulating the electronic structures. Theoretical calculations have predicted that the band gap of BCN nano...
متن کاملVertically aligned BCN nanotubes with high capacitance.
Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that ...
متن کاملLongitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes
Torsional dynamic analysis of carbon nanotubes under the effect of longitudinal magnetic field is carried out in the present study. Torque effect of an axial magnetic field on a carbon nanotube has been defined using Maxwell’s relation. Nonlocal governing equation and boundary conditions for carbon nanotubes are obtained by using Hamilton’s minimum energy principle. Eringen’s nonlocal stress gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2014